YOLOv1#

import torch
from torch import nn, Tensor
---------------------------------------------------------------------------
ModuleNotFoundError                       Traceback (most recent call last)
Cell In[1], line 1
----> 1 import torch
      2 from torch import nn, Tensor

ModuleNotFoundError: No module named 'torch'
architecture_config = [
    (7, 64, 2, 3), 'M',
    (3, 192, 1, 1), 'M',
    (1, 128, 1, 0), 
    (3, 256, 1, 1),
    (1, 256, 1, 0),
    (3, 512, 1, 1), 'M',
    [(1, 256, 1, 0), (3, 512, 1, 1), 4],
    (1, 512, 1, 0),
    (3, 1024, 1, 1), 'M',
    [(1, 512, 1, 0), (3, 1024, 1, 1), 2],
    (3, 1024, 1, 1),
    (3, 1024, 2, 1),
    (3, 1024, 1, 1),
    (3, 1024, 1, 1)
]
class ConvBlock(nn.Module):
    def __init__(self, in_channels, out_channels, **kwargs):
        super().__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
        self.batch_norm = nn.BatchNorm2d(out_channels)
        self.leaky_relu = nn.LeakyReLU(0.1)
        
    def forward(self, x):
        x = self.conv(x)
        x = self.batch_norm(x)
        x = self.leaky_relu(x)
        return x
    

class Yolo(nn.Module):
    def __init__(self, in_channels=3, **kwargs):
        super().__init__()
        self.architecture = architecture_config
        self.in_channels = in_channels
        self.darknet = self._create_conv_layers(self.architecture)
        self.fcs = self._create_fcs(**kwargs)
        
    def forward(self, x):
        x = self.darknet(x)
        x = self.fcs(torch.flatten(x, start_dim=1))
        return x
    
    def _create_conv_layers(self, architecture):
        layers = []
        in_channels = self.in_channels
        
        for x in architecture:
            if type(x) == tuple:
                layers += [
                    ConvBlock(in_channels, x[1], kernel_size=x[0], stride=x[2], padding=x[3])
                ]
                in_channels = x[1]
            elif type(x) == str:
                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
            elif type(x) == list:
                conv1 = x[0]
                conv2 = x[1]
                num_repeats = x[2]
                for _ in range(num_repeats):
                    layers += [
                        ConvBlock(in_channels, conv1[1], kernel_size=conv1[0], stride=conv1[2], padding=conv1[3])
                    ]
                    layers += [
                        ConvBlock(conv1[1], conv2[1], kernel_size=conv2[0], stride=conv2[2], padding=conv2[3])
                    ]
        return nn.Sequential(*layers)
    
    def _create_fcs(self, s, num_boxes, num_classes):
        return nn.Sequential(
            nn.Flatten(),
            nn.Linear(1024 * s * s, 4096),
            nn.Dropout(0.0),
            nn.LeakyReLU(0.1),
            nn.Linear(4096, s * s * (num_classes + num_boxes * 5))
        )
    

def test(s=7, num_boxes=2, num_classes=20):
    model = Yolo(s=s, num_boxes=num_boxes, num_classes=num_classes)
    x = torch.randn((1, 3, 448, 448))
    print(model(x).size())
#     x = x.view((-1, 7, 7, 30))
#     print(model(x).size())
    
test()
torch.Size([1, 1470])
import torch
import os
import pandas as pd
from PIL import Image


class VOCDataset(torch.utils.data.Dataset):
    def __init__(
        self, csv_file, img_dir, label_dir, S=7, B=2, C=20, transform=None,
    ):
        self.annotations = pd.read_csv(csv_file)
        self.img_dir = img_dir
        self.label_dir = label_dir
        self.transform = transform
        self.S = S
        self.B = B
        self.C = C

    def __len__(self):
        return len(self.annotations)

    def __getitem__(self, index):
        label_path = os.path.join(self.label_dir, self.annotations.iloc[index, 1])
        boxes = []
        with open(label_path) as f:
            for label in f.readlines():
                class_label, x, y, width, height = [
                    float(x) if float(x) != int(float(x)) else int(x)
                    for x in label.replace("\n", "").split()
                ]

                boxes.append([class_label, x, y, width, height])

        img_path = os.path.join(self.img_dir, self.annotations.iloc[index, 0])
        image = Image.open(img_path)
        boxes = torch.tensor(boxes)

        if self.transform:
            # image = self.transform(image)
            image, boxes = self.transform(image, boxes)

        # Convert To Cells
        label_matrix = torch.zeros((self.S, self.S, self.C + 5 * self.B))
        for box in boxes:
            class_label, x, y, width, height = box.tolist()
            class_label = int(class_label)

            # i,j represents the cell row and cell column
            i, j = int(self.S * y), int(self.S * x)
            x_cell, y_cell = self.S * x - j, self.S * y - i

            """
            Calculating the width and height of cell of bounding box,
            relative to the cell is done by the following, with
            width as the example:
            
            width_pixels = (width*self.image_width)
            cell_pixels = (self.image_width)
            
            Then to find the width relative to the cell is simply:
            width_pixels/cell_pixels, simplification leads to the
            formulas below.
            """
            width_cell, height_cell = (
                width * self.S,
                height * self.S,
            )

            # If no object already found for specific cell i,j
            # Note: This means we restrict to ONE object
            # per cell!
            if label_matrix[i, j, 20] == 0:
                # Set that there exists an object
                label_matrix[i, j, 20] = 1

                # Box coordinates
                box_coordinates = torch.tensor(
                    [x_cell, y_cell, width_cell, height_cell]
                )

                label_matrix[i, j, 21:25] = box_coordinates

                # Set one hot encoding for class_label
                label_matrix[i, j, class_label] = 1

        return image, label_matrix
import torch
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from collections import Counter

def intersection_over_union(boxes_preds, boxes_labels, box_format="midpoint"):
    """
    Calculates intersection over union
    Parameters:
        boxes_preds (tensor): Predictions of Bounding Boxes (BATCH_SIZE, 4)
        boxes_labels (tensor): Correct labels of Bounding Boxes (BATCH_SIZE, 4)
        box_format (str): midpoint/corners, if boxes (x,y,w,h) or (x1,y1,x2,y2)
    Returns:
        tensor: Intersection over union for all examples
    """

    if box_format == "midpoint":
        box1_x1 = boxes_preds[..., 0:1] - boxes_preds[..., 2:3] / 2
        box1_y1 = boxes_preds[..., 1:2] - boxes_preds[..., 3:4] / 2
        box1_x2 = boxes_preds[..., 0:1] + boxes_preds[..., 2:3] / 2
        box1_y2 = boxes_preds[..., 1:2] + boxes_preds[..., 3:4] / 2
        box2_x1 = boxes_labels[..., 0:1] - boxes_labels[..., 2:3] / 2
        box2_y1 = boxes_labels[..., 1:2] - boxes_labels[..., 3:4] / 2
        box2_x2 = boxes_labels[..., 0:1] + boxes_labels[..., 2:3] / 2
        box2_y2 = boxes_labels[..., 1:2] + boxes_labels[..., 3:4] / 2

    if box_format == "corners":
        box1_x1 = boxes_preds[..., 0:1]
        box1_y1 = boxes_preds[..., 1:2]
        box1_x2 = boxes_preds[..., 2:3]
        box1_y2 = boxes_preds[..., 3:4]  # (N, 1)
        box2_x1 = boxes_labels[..., 0:1]
        box2_y1 = boxes_labels[..., 1:2]
        box2_x2 = boxes_labels[..., 2:3]
        box2_y2 = boxes_labels[..., 3:4]

    x1 = torch.max(box1_x1, box2_x1)
    y1 = torch.max(box1_y1, box2_y1)
    x2 = torch.min(box1_x2, box2_x2)
    y2 = torch.min(box1_y2, box2_y2)

    # .clamp(0) is for the case when they do not intersect
    intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0)

    box1_area = abs((box1_x2 - box1_x1) * (box1_y2 - box1_y1))
    box2_area = abs((box2_x2 - box2_x1) * (box2_y2 - box2_y1))

    return intersection / (box1_area + box2_area - intersection + 1e-6)


def non_max_suppression(bboxes, iou_threshold, threshold, box_format="corners"):
    """
    Does Non Max Suppression given bboxes
    Parameters:
        bboxes (list): list of lists containing all bboxes with each bboxes
        specified as [class_pred, prob_score, x1, y1, x2, y2]
        iou_threshold (float): threshold where predicted bboxes is correct
        threshold (float): threshold to remove predicted bboxes (independent of IoU) 
        box_format (str): "midpoint" or "corners" used to specify bboxes
    Returns:
        list: bboxes after performing NMS given a specific IoU threshold
    """

    assert type(bboxes) == list

    bboxes = [box for box in bboxes if box[1] > threshold]
    bboxes = sorted(bboxes, key=lambda x: x[1], reverse=True)
    bboxes_after_nms = []

    while bboxes:
        chosen_box = bboxes.pop(0)

        bboxes = [
            box
            for box in bboxes
            if box[0] != chosen_box[0]
            or intersection_over_union(
                torch.tensor(chosen_box[2:]),
                torch.tensor(box[2:]),
                box_format=box_format,
            )
            < iou_threshold
        ]

        bboxes_after_nms.append(chosen_box)

    return bboxes_after_nms


def mean_average_precision(
    pred_boxes, true_boxes, iou_threshold=0.5, box_format="midpoint", num_classes=20
):
    """
    Calculates mean average precision 
    Parameters:
        pred_boxes (list): list of lists containing all bboxes with each bboxes
        specified as [train_idx, class_prediction, prob_score, x1, y1, x2, y2]
        true_boxes (list): Similar as pred_boxes except all the correct ones 
        iou_threshold (float): threshold where predicted bboxes is correct
        box_format (str): "midpoint" or "corners" used to specify bboxes
        num_classes (int): number of classes
    Returns:
        float: mAP value across all classes given a specific IoU threshold 
    """

    # list storing all AP for respective classes
    average_precisions = []

    # used for numerical stability later on
    epsilon = 1e-6

    for c in range(num_classes):
        detections = []
        ground_truths = []

        # Go through all predictions and targets,
        # and only add the ones that belong to the
        # current class c
        for detection in pred_boxes:
            if detection[1] == c:
                detections.append(detection)

        for true_box in true_boxes:
            if true_box[1] == c:
                ground_truths.append(true_box)

        # find the amount of bboxes for each training example
        # Counter here finds how many ground truth bboxes we get
        # for each training example, so let's say img 0 has 3,
        # img 1 has 5 then we will obtain a dictionary with:
        # amount_bboxes = {0:3, 1:5}
        amount_bboxes = Counter([gt[0] for gt in ground_truths])

        # We then go through each key, val in this dictionary
        # and convert to the following (w.r.t same example):
        # ammount_bboxes = {0:torch.tensor[0,0,0], 1:torch.tensor[0,0,0,0,0]}
        for key, val in amount_bboxes.items():
            amount_bboxes[key] = torch.zeros(val)

        # sort by box probabilities which is index 2
        detections.sort(key=lambda x: x[2], reverse=True)
        TP = torch.zeros((len(detections)))
        FP = torch.zeros((len(detections)))
        total_true_bboxes = len(ground_truths)
        
        # If none exists for this class then we can safely skip
        if total_true_bboxes == 0:
            continue

        for detection_idx, detection in enumerate(detections):
            # Only take out the ground_truths that have the same
            # training idx as detection
            ground_truth_img = [
                bbox for bbox in ground_truths if bbox[0] == detection[0]
            ]

            num_gts = len(ground_truth_img)
            best_iou = 0

            for idx, gt in enumerate(ground_truth_img):
                iou = intersection_over_union(
                    torch.tensor(detection[3:]),
                    torch.tensor(gt[3:]),
                    box_format=box_format,
                )

                if iou > best_iou:
                    best_iou = iou
                    best_gt_idx = idx

            if best_iou > iou_threshold:
                # only detect ground truth detection once
                if amount_bboxes[detection[0]][best_gt_idx] == 0:
                    # true positive and add this bounding box to seen
                    TP[detection_idx] = 1
                    amount_bboxes[detection[0]][best_gt_idx] = 1
                else:
                    FP[detection_idx] = 1

            # if IOU is lower then the detection is a false positive
            else:
                FP[detection_idx] = 1

        TP_cumsum = torch.cumsum(TP, dim=0)
        FP_cumsum = torch.cumsum(FP, dim=0)
        recalls = TP_cumsum / (total_true_bboxes + epsilon)
        precisions = torch.divide(TP_cumsum, (TP_cumsum + FP_cumsum + epsilon))
        precisions = torch.cat((torch.tensor([1]), precisions))
        recalls = torch.cat((torch.tensor([0]), recalls))
        # torch.trapz for numerical integration
        average_precisions.append(torch.trapz(precisions, recalls))

    return sum(average_precisions) / len(average_precisions)


def plot_image(image, boxes):
    """Plots predicted bounding boxes on the image"""
    im = np.array(image)
    height, width, _ = im.shape

    # Create figure and axes
    fig, ax = plt.subplots(1)
    # Display the image
    ax.imshow(im)

    # box[0] is x midpoint, box[2] is width
    # box[1] is y midpoint, box[3] is height

    # Create a Rectangle potch
    for box in boxes:
        box = box[2:]
        assert len(box) == 4, "Got more values than in x, y, w, h, in a box!"
        upper_left_x = box[0] - box[2] / 2
        upper_left_y = box[1] - box[3] / 2
        rect = patches.Rectangle(
            (upper_left_x * width, upper_left_y * height),
            box[2] * width,
            box[3] * height,
            linewidth=1,
            edgecolor="r",
            facecolor="none",
        )
        # Add the patch to the Axes
        ax.add_patch(rect)

    plt.show()

def get_bboxes(
    loader,
    model,
    iou_threshold,
    threshold,
    pred_format="cells",
    box_format="midpoint",
    device="cuda",
):
    all_pred_boxes = []
    all_true_boxes = []

    # make sure model is in eval before get bboxes
    model.eval()
    train_idx = 0

    for batch_idx, (x, labels) in enumerate(loader):
        x = x.to(device)
        labels = labels.to(device)

        with torch.no_grad():
            predictions = model(x)

        batch_size = x.shape[0]
        true_bboxes = cellboxes_to_boxes(labels)
        bboxes = cellboxes_to_boxes(predictions)

        for idx in range(batch_size):
            nms_boxes = non_max_suppression(
                bboxes[idx],
                iou_threshold=iou_threshold,
                threshold=threshold,
                box_format=box_format,
            )


            #if batch_idx == 0 and idx == 0:
            #    plot_image(x[idx].permute(1,2,0).to("cpu"), nms_boxes)
            #    print(nms_boxes)

            for nms_box in nms_boxes:
                all_pred_boxes.append([train_idx] + nms_box)

            for box in true_bboxes[idx]:
                # many will get converted to 0 pred
                if box[1] > threshold:
                    all_true_boxes.append([train_idx] + box)

            train_idx += 1

    model.train()
    return all_pred_boxes, all_true_boxes



def convert_cellboxes(predictions, S=7):
    """
    Converts bounding boxes output from Yolo with
    an image split size of S into entire image ratios
    rather than relative to cell ratios. Tried to do this
    vectorized, but this resulted in quite difficult to read
    code... Use as a black box? Or implement a more intuitive,
    using 2 for loops iterating range(S) and convert them one
    by one, resulting in a slower but more readable implementation.
    """

    predictions = predictions.to("cpu")
    batch_size = predictions.shape[0]
    predictions = predictions.reshape(batch_size, 7, 7, 30)
    bboxes1 = predictions[..., 21:25]
    bboxes2 = predictions[..., 26:30]
    scores = torch.cat(
        (predictions[..., 20].unsqueeze(0), predictions[..., 25].unsqueeze(0)), dim=0
    )
    best_box = scores.argmax(0).unsqueeze(-1)
    best_boxes = bboxes1 * (1 - best_box) + best_box * bboxes2
    cell_indices = torch.arange(7).repeat(batch_size, 7, 1).unsqueeze(-1)
    x = 1 / S * (best_boxes[..., :1] + cell_indices)
    y = 1 / S * (best_boxes[..., 1:2] + cell_indices.permute(0, 2, 1, 3))
    w_y = 1 / S * best_boxes[..., 2:4]
    converted_bboxes = torch.cat((x, y, w_y), dim=-1)
    predicted_class = predictions[..., :20].argmax(-1).unsqueeze(-1)
    best_confidence = torch.max(predictions[..., 20], predictions[..., 25]).unsqueeze(
        -1
    )
    converted_preds = torch.cat(
        (predicted_class, best_confidence, converted_bboxes), dim=-1
    )

    return converted_preds


def cellboxes_to_boxes(out, S=7):
    converted_pred = convert_cellboxes(out).reshape(out.shape[0], S * S, -1)
    converted_pred[..., 0] = converted_pred[..., 0].long()
    all_bboxes = []

    for ex_idx in range(out.shape[0]):
        bboxes = []

        for bbox_idx in range(S * S):
            bboxes.append([x.item() for x in converted_pred[ex_idx, bbox_idx, :]])
        all_bboxes.append(bboxes)

    return all_bboxes

def save_checkpoint(state, filename="my_checkpoint.pth.tar"):
    print("=> Saving checkpoint")
    torch.save(state, filename)


def load_checkpoint(checkpoint, model, optimizer):
    print("=> Loading checkpoint")
    model.load_state_dict(checkpoint["state_dict"])
    optimizer.load_state_dict(checkpoint["optimizer"])
import torch
import torch.nn as nn
from utils import intersection_over_union


class YoloLoss(nn.Module):
    """
    Calculate the loss for yolo (v1) model
    """

    def __init__(self, S=7, B=2, C=20):
        super(YoloLoss, self).__init__()
        self.mse = nn.MSELoss(reduction="sum")

        """
        S is split size of image (in paper 7),
        B is number of boxes (in paper 2),
        C is number of classes (in paper and VOC dataset is 20),
        """
        self.S = S
        self.B = B
        self.C = C

        # These are from Yolo paper, signifying how much we should
        # pay loss for no object (noobj) and the box coordinates (coord)
        self.lambda_noobj = 0.5
        self.lambda_coord = 5

    def forward(self, predictions, target):
        # predictions are shaped (BATCH_SIZE, S*S(C+B*5) when inputted
        predictions = predictions.reshape(-1, self.S, self.S, self.C + self.B * 5)

        # Calculate IoU for the two predicted bounding boxes with target bbox
        iou_b1 = intersection_over_union(predictions[..., 21:25], target[..., 21:25])
        iou_b2 = intersection_over_union(predictions[..., 26:30], target[..., 21:25])
        ious = torch.cat([iou_b1.unsqueeze(0), iou_b2.unsqueeze(0)], dim=0)

        # Take the box with highest IoU out of the two prediction
        # Note that bestbox will be indices of 0, 1 for which bbox was best
        iou_maxes, bestbox = torch.max(ious, dim=0)
        exists_box = target[..., 20].unsqueeze(3)  # in paper this is Iobj_i

        # Set boxes with no object in them to 0. We only take out one of the two 
        # predictions, which is the one with highest Iou calculated previously.
        box_predictions = exists_box * (
            (
                bestbox * predictions[..., 26:30]
                + (1 - bestbox) * predictions[..., 21:25]
            )
        )

        box_targets = exists_box * target[..., 21:25]

        box_predictions[..., 2:4] = torch.sign(box_predictions[..., 2:4]) * torch.sqrt(
            torch.abs(box_predictions[..., 2:4] + 1e-6)
        )
        box_targets[..., 2:4] = torch.sqrt(box_targets[..., 2:4])

        box_loss = self.mse(
            torch.flatten(box_predictions, end_dim=-2),
            torch.flatten(box_targets, end_dim=-2),
        )

        # pred_box is the confidence score for the bbox with highest IoU
        pred_box = (
            bestbox * predictions[..., 25:26] + (1 - bestbox) * predictions[..., 20:21]
        )

        object_loss = self.mse(
            torch.flatten(exists_box * pred_box),
            torch.flatten(exists_box * target[..., 20:21]),
        )

        no_object_loss = self.mse(
            torch.flatten((1 - exists_box) * predictions[..., 20:21], start_dim=1),
            torch.flatten((1 - exists_box) * target[..., 20:21], start_dim=1),
        )

        no_object_loss += self.mse(
            torch.flatten((1 - exists_box) * predictions[..., 25:26], start_dim=1),
            torch.flatten((1 - exists_box) * target[..., 20:21], start_dim=1)
        )

        class_loss = self.mse(
            torch.flatten(exists_box * predictions[..., :20], end_dim=-2,),
            torch.flatten(exists_box * target[..., :20], end_dim=-2,),
        )

        loss = (
            self.lambda_coord * box_loss  # first two rows in paper
            + object_loss  # third row in paper
            + self.lambda_noobj * no_object_loss  # forth row
            + class_loss  # fifth row
        )

        return loss